Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
BMC Vet Res ; 19(1): 26, 2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2287307

ABSTRACT

BACKGROUND: Porcine circovirus type 2 (PCV2) is one of the major pathogens commonly found in pigs, which causes immunosuppression and apoptosis. Vaccination and a single drug cannot totally prevent and treat PCV2 infection. Our previous in vitro study reported that the synergistic anti-PCV2 effect of Matrine and Osthole was better than that of Matrine or Osthole alone, This study was aimed to evaluate the synergistic anti-PCV2 effect as well as the underline molecular mechanism of Matrine and Osthole in Kunming (KM) mice model infected with PCV2. KM mice were randomly divided into 8 groups namely control group, PCV2 infected, Matrine combined with Osthole high dose treatment (40 mg/kg + 12 mg/kg), medium dose treatment (20 mg/kg + 6 mg/kg), low dose treatment (10 mg/kg + 3 mg/kg), Matrine treatment (40 mg/kg), Osthole treatment (12 mg/kg) and Ribavirin positive control (40 mg/kg) groups. PCV2 was intraperitoneally (i.p.) injected in all mice except the control group. 5 days of post-infection (dpi), mice in different treatment groups were injected i.p. with various doses of Matrine, Osthole and Ribavirin once daily for the next 5 consecutive days. RESULTS: The synergistic inhibitory effect of Matrine and Osthole on PCV2 replication in mouse liver was significantly heigher than that of Matrine and Osthole alone. The expression of GRP78, p-PERK, p-eIF2α, ATF4, CHOP, cleaved caspase-3 and Bax proteins were significantly reduced, while that of Bcl-2 was significantly increased in Matrine combined with Osthole groups, which alleviated the pathological changes caused by PCV2, such as interstitial pneumonia, loss of spleen lymphocytes, infiltration of macrophages and eosinophils. CONCLUSIONS: The synergistic anti-apoptotic effect of Matrine and Osthole was better than their alone effect, Both Matrine and Osthole had directly inhibited the expression of PCV2 Cap and the apoptosis of spleen cells induced by PCV2 Cap through the PERK pathway activated by endoplasmic reticulum (ER) GRP78. These results provided a new insight to control PCV2 infection and provide good component prescription candidate for the development of novel anti-PCV2 drugs.


Subject(s)
Circoviridae Infections , Circovirus , Matrines , Animals , Mice , Apoptosis , Circoviridae Infections/drug therapy , Circoviridae Infections/pathology , Endoplasmic Reticulum Chaperone BiP , Matrines/pharmacology , Ribavirin/pharmacology , Spleen
2.
Arch Physiol Biochem ; : 1-8, 2020 Sep 11.
Article in English | MEDLINE | ID: covidwho-2234311

ABSTRACT

BACKGROUND: The clinical efficacy of matrine in treating coronavirus disease (COVID-19) has been confirmed; however, its underlying mechanism of action remains unknown. METHODS: TCMSP, SwissTargetPrediction, SEA, GeneCards, CTD, and TTD were used to identify potential targets for matrine in SARS-CoV-2. Cytoscape software was used to determine the target-pathway network for topographical analysis. The online STRING analysis platform and Cytoscape were together used to generate a PPI network and for GO and KEGG pathway enrichment analysis. Finally, molecular docking simulations were performed to study matrine-Mpro, matrine-ACE2, and matrine-RdRp interactions. RESULTS: Ten common matrine targets were obtained, particularly including TNF-α, IL-6, and CASP3. GO and KEGG pathway enrichment analysis revealed five significantly enriched signalling pathways involved in cell proliferation, apoptosis, programmed cell death, and immune responses. CONCLUSIONS: During COVID-19 treatment, matrine regulates viral replication, host cell apoptosis, and inflammation by targeting the TNF-α, IL-6, and CASP3 in the TNF signalling pathway.

3.
Pharmaceutics ; 14(3)2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1742580

ABSTRACT

Matrine (MAR), oxymatrine (OMAR), and sophoridine (SPD) are natural alkaloids with varying biological activities; matrine was recently used for the treatment of coronavirus disease 2019 (COVID-19). However, the short half-lives and rapid elimination of these matrine-type alkaloids would lead to low oral bioavailability and serious side effects. Herein, resveratrol (RES) was selected as a co-former to prepare their co-amorphous systems to improve the therapeutic index. The formation of co-amorphous MAR-RES, OMAR-RES, and SPD-RES was established through powder X-ray diffraction and modulated temperature differential scanning calorimetry. Furthermore, Fourier transform infrared spectroscopy and NMR studies revealed the strong molecular interactions between resveratrol and these alkaloids, especially OMAR-RES. Matrine, oxymatrine, and sophoridine in the co-amorphous systems showed sustained release behaviors in the dissolution experiments, due to the recrystallization of resveratrol on the surface of co-amorphous drugs. The three co-amorphous systems exhibited excellent physicochemical stability under high relative humidity conditions. Our study not only showed that minor structural changes of active pharmaceutical ingredients may have distinct molecular interactions with the co-former, but also discovered a new type of sustained release mechanism for co-amorphous drugs. This promising co-amorphous drug approach may present a unique opportunity for repurposing these very promising drugs against COVID-19.

4.
Drug Deliv ; 28(1): 325-342, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1057773

ABSTRACT

The aim of the present study was to investigate the pharmacological mechanism of matrine in treatment of COVID-19 combined with liver injury. Potential targets related to matrine, COVID-19 and liver injury were identified from several databases. We constructed PPI network and screened the core targets according to the degree value. Then, GO and KEGG enrichment were carried out. Molecular docking technology was used to verify the affinity between matrine and the crystal structure of core target protein. Finally, real-time RT-PCR was used to detect the effects of matrine on hub gene expression in liver tissue of liver injury mice and lung tissue of lung injury mice to further confirm the results of network pharmacological analysis. The results show that six core targets including AKT1, TP53, TNF, IL6, BCL2L1 and ATM were identified. The potential therapeutic mechanism of matrine on COVID-19 combined with liver injury is closely related to regulate antiviral process, improve immune system and regulate the level of inflammatory factors. Molecular docking showed that matrine could spontaneously bind to the receptor protein and had strong binding force. Real-time RT-PCR demonstrated that matrine could significantly reduce the expression of AKT1, TP53, TNF, IL6 and ATM in mice with liver injury or lung injury (P < 0.05), and increase the expression of BCL2L1 to a certain extent (P > 0.05). Our results indicate that matrine can achieve simultaneous intervention of COVID-19 combined with liver injury by multi-dimensional pharmacological mechanism.


Subject(s)
Alkaloids/pharmacology , COVID-19 Drug Treatment , COVID-19/epidemiology , Chemical and Drug Induced Liver Injury/epidemiology , Molecular Docking Simulation/methods , Quinolizines/pharmacology , Alkaloids/administration & dosage , Animals , Antiviral Agents/pharmacology , Chemical and Drug Induced Liver Injury/etiology , Dose-Response Relationship, Drug , Humans , Lipopolysaccharides/pharmacology , Liver/drug effects , Male , Mice , Mice, Inbred C57BL , Quinolizines/administration & dosage , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Signal Transduction/drug effects , Matrines
5.
Zhongguo Zhong Yao Za Zhi ; 45(10): 2221-2231, 2020 May.
Article in Chinese | MEDLINE | ID: covidwho-438384

ABSTRACT

In this paper, we analyzed medical records of 40 patients with coronavirus disease 2019(COVID-19), in order to explore the clinical efficacy of Matrine and Sodium Chloride Injection in the treatment of COVID-19. The investigation was based on the results of a previous animal test, which was aimed to investigate and confirme the clinical efficacy of Matrine and Sodium Chloride Injection in the treatment of COVID-19. The animal test demonstrated that Matrine and Sodium Chloride Injection has a significant therapeutic effect on the human coronavirus pneumonia for the model mice. The lung inhibition index reached up to 86.86%. The evaluation was conducted on 40 confirmed cases of COVID-19 treated at Jingzhou Hospital of Infectious Disease(Chest Hospital) of Hubei Pro-vince from January 30~(th) to March 21~(th), 2020. In these cases, patients were treated with other integrated Chinese and Western medicines regimens in the recommended Matrine and Sodium Chloride Injection diagnosis and treatment regimen. The clinical manifestations, laboratory data, nucleic acid clearance time, and imaging data were compared and analyzed before and after treatment. After administration with Matrine and Sodium Chloride Injection, the clinical symptoms of 40 cases were alleviated markedly, and their blood analysis and biochemical indexes returned to normal. The lung CT showed more than 50% of lesion absorption rate, and the viral nucleic acid test showed the average clearance time of patients was 16.6 days, and the average length of hospital stay was 25.9 days. After administration with Matrine and Sodium Chloride Injection, the symptoms of cough and fatigue were alleviated significantly, and the appetite was significantly improved compared with before, especially for patients with gastrointestinal symptoms. Additionally, laboratory indicators, especially absolute value and ratio of lymphocytes and CRP were significantly alleviated. According to the chest CT for short-term review, the absorption of lung lesions was faster than before, especially for grid-like and fibrotic lesions. Compared with antiviral drugs, such as Abidol and Kriging, the nucleic acid clearance time was significantly shorter than the cases treated with Matrine and Sodium Chloride Injection. The clinical effective rate of 40 cases was 100.0%. We believed that Matrine and Sodium Chloride Injection have a good clinical effect in the treatment of COVID-19, and suggested increasing the clinical application and further conducting large-sample-size cli-nical verification.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Alkaloids , Animals , COVID-19 , Disease Models, Animal , Mice , Quinolizines , SARS-CoV-2 , Sodium Chloride , Treatment Outcome , Matrines
6.
Acta Pharmaceutica Sinica ; (12): 366-373, 2020.
Article in Chinese | WPRIM (Western Pacific), WPRIM (Western Pacific) | ID: covidwho-18902

ABSTRACT

"TCM syndrome of plague attack lung" is a classification of traditional Chinese medicine syndromes of the novel coronavirus pneumonia by the Beijing Municipal Administration of Traditional Chinese Medicine. In this study, a mouse model combining disease with syndrome of human coronavirus pneumonia with cold-dampness pestilence attacking the lung was established for the first time, and the therapeutic effect of matrine sodium chloride injection was evaluated based on immune regulation and inflammatory damage. Lung index, lung index inhibition rate and HE stain were used to evaluate the therapeutic effect of matrine sodium chloride injection on the model mice; the viral load in lung tissue was measured by RT-PCR to evaluate its antiviral effect; the percentage of CD4+ T cells, CD8+ T cells and B cells were detected by flow cytometry to evaluate its immunomodulatory effect; the production of interleukin 6 (IL-6), IL-10, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) were measured by ELISA to evaluate its anti-inflammatory effect. All interventions and operations in the experiment were approved by the Animal Ethics Committee of the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, and conformed to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH) and Beijing Experimental Animal Ethics Committee. The results showed that intraperitoneal injection of the high-dose (36.67 mL·kg-1·d-1) and low-dose (18.33 mL·kg-1·d-1) of matrine sodium chloride injection significantly improved the pathological damage of lung tissue and reduced lung index. The lung index inhibition rates were 86.86% and 76.53%, respectively. The production of IL-6, IL-10, TNF-α, IFN-γ, as well as the viral load in lung tissue were reduced significantly compared to the model; the percentage of CD4+ T cells, CD8+ T cells and B cells in peripheral blood were increased compared to the model. These results indicated that the matrine sodium chloride injection has an evident therapeutic effect on the model, and its mechanism was related to the inhibition virus replication, regulation of immunity function and inhibition of inflammatory factor release. This study provided laboratory data support for matrine sodium chloride injection which was used to treat the novel coronavirus pneumonia in clinical in Hubei province. These results indicated that the matrine sodium chloride injection has a good prospect for prevention and treatment of the novel coronavirus pneumonia.

SELECTION OF CITATIONS
SEARCH DETAIL